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Abstract. The central set of a domain D is the set of centers of maximal discs in D.

Fremlin showed in [3] that the central set of a planar domain has zero area and asked

whether it can have Hausdorff dimension strictly larger than 1. We construct a planar

domain with central set of Hausdorff dimension 2.

1. Introduction

Let D be a domain in R
2. A subdisc of D is maximal if it is not strictly contained in any

other subdisc of D. The central set of D consists of the centers of maximal discs, i.e.,

C(D) = { x ∈ D : D(x, d(x, ∂D)) is maximal in D},

where D(x, r) denotes a disc of radius r centered at x and d(A,B) denotes the Euclidean

distance between subsets A,B ⊂ R
2. The skeleton or medial axis of D is

M(D) = {x ∈ D : ∃ distinct y, y′ ∈ ∂D s.t. d(x, y) = d(x, y′) = d(x, ∂D)}

It is easy to check that M(D) ⊂ C(D), with equality for some domains (such as polygons),

but not in general. For example, a non-circular ellipse contains two maximal discs which are

each tangent to the boundary at only one point. Nevertheless, some sources in the literature

mistakenly identify these sets and one purpose of this note is to emphasize how different

they can be, even for quite reasonable domains.

In [4], Erdös proved that M(D) has Hausdorff dimension 1 for planar domains. In [3]

Fremlin gives many interesting further results, including the fact that any central set of a

planar domain has zero area. He also gives an example of a domain so that the closure of
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its medial axis covers a disc. Given the previous fact, we see that the central set does not

always contain the closure of the medial axis. Fremlin asks whether the central set can have

Hausdorff dimension strictly bigger than 1. How big can the gap between the dimensions of

the medial axis and central set be? We answer this by proving

Theorem 1.1. There is a domain D ⊂ R
2 with dimH(C(D)) = 2.

Moreover, our domain is close to the unit disc in the following sense. For any ǫ > 0 we

can take D(0, 1) ⊂ D ⊂ D(0, 1 + ǫ), and we can take ∂D to be an ǫ-Lipschitz graph, i.e.,

D = {reiθ : 0 ≤ r < f(θ)},

where f : [0, 2π] → [1, 1 + ǫ] satisfies |f(s) − f(t)| ≤ ǫ|s − t|. The construction also gives

something better than just dimension 2. We will show that we can take Hϕ(C(D)) > 0 for

measure functions ϕ so that ϕ(t)/t2 ր ∞ as slowly as we wish, as t → 0.

Recall the definitions of Hausdorff measures and Hausdorff dimension. Given a subset X

of the plane and a continuous increasing function ϕ : [0,∞) → [0,∞), one defines Hausdorff

ϕ-measure of X as

Hϕ(X) = lim
ε→0

inf

{
∞∑

i=1

ϕ(ri) : X ⊂
∞⋃

i=1

D(xi, ri), ri < ε

}
.

When ϕ(t) = ts, for some s > 0, this is called s-dimensional measure and is denoted by Hs.

The Hausdorff dimension of X is

dimH(X) = inf{s : Hs(X) = 0} = sup{s : Hs(X) = ∞}.

The standard way to prove a lower bound on dimension is to use:

The mass distribution principle. If X ⊂ R
2 supports a positive measure µ such that

µ(D(x, r)) ≤ Cϕ(r),

for a fixed constant C > 0 and for all x ∈ R
2 and r > 0 then Hϕ(X) ≥ 0 (see [7]).

Central sets and the medial axis arise naturally in various parts of analysis and computer

science, e.g., [2], [6], [8] (see [1] for a connection to conformal mapping and its references for

further applications of the medial axis).
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We thank the referee for their careful reading of the original manuscript and for suggesting

several changes which corrected mistakes and improved the exposition.

The rest of the paper is organized as follows. In Section 2 we define a class of domains

called “disc trees” for which the medial axes are trees and impose some conditions which

imply the closure of the medial axis is contained in the central set. In Section 3 we construct

domains of this type so that M(D) has dimension 2.

2. Disc Trees

Our domains are unions of discs arranged with the structure of an infinite rooted tree. We

will construct them inductively as an increasing union D0 ⊂ D1 ⊂ D2 . . . whose union is the

desired domain D. We start with D0 being the unit disc. In this case the skeleton M0 of D0

is just one point, the origin.

Let G1 = {D1,i}
n1

i=1 be the “children” of D0. This is a collection of finitely many discs with

centers in D0 such that the corresponding crescents C1,i = D1,i \ D0 are mutually disjoint.

Let D1 = D0 ∪
⋃n1

i=1
D1,i. The skeleton M1 of D1 is obtained from M0 by adding (radial)

segments connecting M0 to the centers of the discs D1,i. The corresponding bending points

are defined as {b+

i , b−i } = ∂D0 ∩ ∂D1,i. There is a 1-parameter family of subdiscs of D1 which

hit ∂D1 exactly at these two points and whose centers sweep out the interval between the

centers of D0 and D1,i.

Since the crescents C1,i are mutually disjoint the maximal discs of D0 ∪ D1,i are still

maximal in D1. Hence M1 is a tree with one vertex of degree n1 and n1 vertices of degree

one. Let

B1 = {x ∈ D1| dist(x, ∂D1) = dist(x, ∂D0 ∩ ∂D1)}.

Then D1 \B1 can be written as a disjoint union of circular sectors S1,i of D1,i corresponding

to the crescents C1,i (see white regions in Figure 1). B1 \ M1 consists of two type of points:

those for which the closest points on ∂D1 are bending points (the dark grey triangular regions

in Figure 1) and the rest (light grey circular sectors, which could possibly degenerate to a

line segment if two successive sectors have a common bending point).
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Figure 1. Here are D0, D1 and D2. Black represents the medial axis, the

union of the grey regions is B, the dark grey triangles are regions closest to

bending points, light gray point have a unique closest boundary point and the

white regions are the sectors S.

In general, suppose Dk has been constructed from Dk−1 by adding discs Dk,i, i = 1, . . . , nk

and let Sk,i denote the corresponding sectors. Let Gk+1 = {Dk+1,i}
nk+1

i=1 be a collection of discs

with centers in ∪nk

i=1Sk,i. Denote by D̃k+1,j ∈ Gk the (k-th generation) disc which contains

the center of Dk+1,j (i.e., the “parent” of Dk+1,j). Assume that k +1 generation discs satisfy

the following conditions:

(i) Ck+1,i := Dk+1,i \ Dk = Dk+1,i \ D̃k+1,i;

(ii) Ck+1,i ∩ Ck+1,j = ∅ whenever i 6= j.

Let Dk+1 = Dk ∪
nk+1

i=1 Dk+1,i. The skeleton Mk+1 of Dk+1 is obtained from Mk by adding

edges connecting the centers of discs of Gk+1 to the corresponding degree one vertices of Mk.

Let

Bk+1 = int{x ∈ Dk+1| dist(x, ∂Dk+1) = dist(x, ∂Dk ∪ ∂Dk+1)}.

Just as before Dk+1 \Bk+1 = ∪
nk+1

i=1 Sk+1,i, is a union of disjoint sectors and Bk+1 \Mk+1 is a

union of “bending” triangles and circular sectors. So for every edge e of Mk there are two

triangles T+ and T− which have e as a common edge and the corresponding bending points

b+ and b− as vertices, respectively.
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In this way we obtain an increasing sequence of domains D0 ⊂ D1 ⊂ . . . ⊂ Dk ⊂ . . .. Let

D =
⋃

∞

i=1
Di. We will call a domain a disc tree if it can be constructed as above. We will

also impose three extra conditions for the remainder of this paper. First, we require that

αk, the maximum angle of a sector in the kth generation, tends to zero. Second, we require

that the medial axis of Dk remains uniformly bounded away from ∂Dk with an estimate

independent of k. Thirdly, we assume that each sector is contained in the cone defined by

its parent sector (this is satisfied if the αk tend to zero fast enough).

With these assumptions it is fairly easy to see that the closure of the medial axis is

contained in the central set, but we will give the details for completeness.

Let D be a disc tree and let B =
⋃

∞

k=1
Bi and L = D \ B. Note that if x ∈ B then

x ∈ Bk for some k and so, by construction, the segment connecting x to a nearest point of

the boundary is also in B.

Given a sector Sk,i from the construction, let S̃k,i be the “extended sector” Sk,i ⊂ S̃k,i ⊂ D

so that ∂S̃k,i ∩ D = ∂Sk,i ∩ D, i.e., S̃k,i is Sk,i plus the part of D separated from the origin

by Sk,i. By construction, S̃k,i is in the infinite cone obtained by extending the edges of Sk,i.

Note that L is an intersection of finite unions of extended sectors (closed in D), L =

∩k ∪nk

i=1 S̃k,i, and hence L is closed in D. Moreover, every point x ∈ L is contained in

an infinite, decreasing sequence of closed extended sectors, whose angles decrease to zero.

Therefore each connected component of L is a line segment in D, touching ∂D at one end

and M(D) at the other. Moreover, since M(D) \ M(D) is contained in the union of kth

generation extended sectors for each k, it must be contained in L. Since distinct sectors

of the kth generation may only touch on ∂D and since M(D) is bounded away from ∂D,

the only way for a sequence in M(D) to approach a point of M(D) \ M(D) is through a

sequence of nested extended sectors and the only possible limit point is an endpoint of a

connected component of L. Thus M(D)\M(D) contains exactly one point in each connected

component of L, and this point must be an endpoint of that component (which is a segment).

Finally, we want to show every point of M(D)\M(D) is in C(D), the central set. Suppose

not, i.e., suppose there is a point x ∈ M(D) \ (M(D) ∪ C(D)). Then x ∈ L, has a unique

closest point y on ∂D but the disc D(x, |x − y|) is not maximal in D. Therefore this disc is
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contained in a larger subdisc of D, which must be centered at a point x′ which lies on the

line through y and x. The point x′ must be in L for otherwise it would be in B and hence

so would x by our remark following the definition of L. This implies x in an interior point

of a component of L and hence not in M(D), a contradiction.

3. Proof of theorem 1.1

We will now construct a particular disc tree and prove M(D) \ M(D) has dimension 2.

We actually describe how to build an infinite rooted tree in the plane. It is easy to place

discs at the vertices of this tree so that the tree becomes the medial axis of the union of discs

(this will be explained below).

Consider an increasing function ϕ on (0, 1) so that limt→0 ϕ(t)/t2 = ∞. Let φ(t) = ϕ(t)/t2.

For example, if we show the central set has positive measure for the measure function ϕ(t) =

t2φ(t) = t2 log 1

t
, then it certainly has Hausdorff dimension 2.

The construction is by induction. Suppose we have two strictly increasing integer sequences

p = {pi} and n = {ni} such that pi divides ni. Let qi = pi + 1 and set

Nk =

k∏

i=1

ni, Pk =

k∏

i=1

pi, Qk =

k∏

i=1

qi.

Let rk = 1/QkNk and assume these sequences satisfy

Qk+1 ≥ QkNk = r−1

k(3.1)

φ(rk) = φ(Q−1

k N−1

k ) ≥ q2

kQ
2

k.(3.2)

Note that since φ(t) ր ∞ as t → 0 we can make the left hand side of (3.2) as large as we want

by taking Nk → ∞, while keeping qk, pk, Qk fixed. Taken together, these conditions imply

Qk+1 ≥ (φ−1(q2
kQ

2
k))

−1, so that {Qk} grows very quickly if φ grows slowly. For example, if

φ(t) = log 1

t
, then Qk+1 ≥ exp(q2

kQ
2
k).

Initial step: Let 0 be the root of the tree. Divide the plane into n1 disjoint sectors with

vertex at 0 and all with angle α1 := 2π/n1. On the bisector of the jth sector place segments

of the form [0, z] where |z| = (1+(j mod p1))/Q1 for j = 0, . . . , n1−1. Thus these segments

increase in length by 1/Q1 at each step until they reach length p1/Q1 and then start at 1/Q1
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again, see Figure 2. We let V1 denote the non-zero endpoints of these segments. Note that

V1 can be thought of as consisting of p1 rows, or annular shells, in which the vertices which

are equidistant from 0, and each row contains n1/p1 vertices.

Figure 2. The first generation segments. Here p1 = 4, n1 = 36 and α1 = 10◦.

General step: Suppose the kth generation edges and vertices Vk have been constructed.

For each v ∈ Vk let r(v) be the ray starting at ṽ, the parent of v, and passing through

v. Also let r±(v) be the rays starting at v and making an angle ±αk/2 with r(v), where

αk = αk−1/nk = 2π/Nk. Let C(v) be the cone with sides r±(v) and angle αk at v.

Divide C(v) into nk+1 congruent cones of opening αk+1 = 2π/Nk+1. On the bisectors of

these cones place the (k + 1)st generation segments of lengths (1 + (j mod pk+1))/Qk+1

for j = 0, . . . , nk+1 − 1. The new endpoints can be divided into pk+1 rows with nk+1/pk+1

vertices per row. The collection Vk+1 is given by doing this construction for every vertex in

Vk. Continue by induction. Denote the resulting tree by Γ = Γ(p,n).

To construct a domain for which Γ is the medial axis one needs to start with a disc D0 of

radius R strictly larger than 2. For each first generation vertex v ∈ V1 consider the disc D(v)

centered at v such that ∂D(v)∩∂D0 = (r+(v)∪r−(v))∩∂D0. Define D1 = D0

⋃
v∈V1

D(v). For

a v ∈ V2 denote by D(v) the disc centered at v such that ∂D(v)∩∂D1 = (r+(v)∪r−(v))∩∂D1.

Then D2 = D1 ∪v∈V2
D(v). Continuing by induction we get a sequence of domains D0 ⊂

D1 ⊂ . . . ⊂ Dk ⊂ . . . and get D =
⋃

∞

k=0
Dk. By construction, all sector angles tend to zero

uniformly. According to the previous section, Γ is the medial axis of D and C(D) contains

Γ. We shall see below that Γ ⊂ D(0, 2) ⊂ D0 which implies Γ is bounded away from ∂D,
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as desired. Note that if R is large, then the boundary of the domain lies in a thin annulus

between radii R and R + ǫ and is Lipschitz with a small constant. Thus rescaling gives the

claim following the statement of Theorem 1.1.

Let Γ̃ = Γ \ Γ. To estimate the dimension of Γ̃ we consider a special covering of it by

circular sectors. To do that first note that if v is a vertex of generation k then all its

descendants are contained in a subsector of the cone C(v). We are interested in the radius of

the smallest such subsector. To find it, we note that the children of v are at most pk+1/Qk+1

away from v, the grand children are at most pk+1

Qk+1
+ pk+2

Qk+2
away and so on. Hence, we see that

any descendant of v is at most lk :=
∑

∞

i=k+1
pi/Qi away. Let us denote by C(v) the circular

sector centered at v of angle αk and radius
∑

∞

i=k+1
pi/Qi. Then

Γ̃ =
∞⋂

i=1

⋃

v∈Vi

C(v).

v′

C(v′)

C(v)

v

pk+1

Qk+1

Figure 3. The covering of Γ̃ by circular sectors.

Lemma 3.1. With notation as above lk = 1

Qk
.

Proof. First, note that

(3.3) lk = lim
n→∞

n∑

i=k+1

pi

Qi

=
Lk+1

Qk

,
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where Lk+1 := limn→∞

[
pk+1

qk+1
+ . . . + pn

qk+1...qn

]
. We claim Lk = 1, for every k. Indeed, the

general term of the sequence can be rewritten using the fact that qi = pi + 1 as follows

pk

qk

+
1

qk

pk+1

qk+1

+ . . . +

(
1

qk

1

qk+1

. . .
1

qn−1

)
pn

qn

=
pk

qk

+

(
1 −

pk

qk

)
pk+1

qk+1

+ . . . +
n−1∏

i=k

(
1 −

pi

qi

)
pn

qn

.

(3.4)

Now, given a sequence of numbers ci < 1, induction on n implies

ck + (1 − ck)ck+1 + . . . +

[
n−1∏

i=k

(1 − ci)

]
cn = 1 −

n∏

i=k

(1 − ci).(3.5)

Applying this in our case we get

(3.6) Lk = lim
n→∞

[
1 −

1

qk . . . qn

]
= 1,

since qi = pi + 1 > 2,∀i. �

Now we are ready to calculate the Hausdorff dimension of Γ̃. We will use the mass

distribution principle. Define a probability measure µ on Γ̃ by distributing it evenly among

all the sectors of the same generation, i.e.,

µ(C(v)) =
1

Ni

, ∀v ∈ Vi.

For a ball B ⊂ R
2 and i ∈ N let νi(B) be the number of i-th generation sectors which

have positive µ-mass when intersected with B, or

(3.7) νi(B) = #{C(v) : µ(C(v) ∩ B) > 0, v ∈ Vi}.

Recall that rk = lk/Nk = Q−1

k N−1

k . This is approximately the length of the circular arc edge

of C(v) in the kth generation. The sectors of the next generation which are contained in

C(v) are actually contained in truncated sector obtained by removing all points within lk/qk

of v. The remaining region has two long radial edges (with respect to v) and two circular arc

edges, one of length about rk (the one farther from v) and one of length about rk/qk. Thus,

if B is a ball of diameter ≤ rk, it can hit at most O(qk) kth generation sectors in positive

measure. (With a little more work one can show only O(1) sectors can hit B, but the weaker

estimate is easier and sufficient for us.)
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Clearly rk = lk/Nk < lk/qk < lk (since Nk > nk ≥ qk). Also note that by (3.1), we have

lk+1 = Q−1

k+1
≤ Q−1

k N−1

k = rk so

· · · < rk+1 < lk+1 < rk < lk/qk < lk < . . . .

Fix a ball B, let |B| denote its diameter and choose an index k so that rk+1 < |B| ≤ rk.

As noted above, B hits at most O(qk) sectors in the kth generation and it is enough to

estimate the mass coming from one of them. Fix such a sector, C(v), hitting B and consider

the (k + 1)st generation subsectors of C(v). They are arranged into pk levels, according to

their distance from the point v (which are multiples of lk/qk). Since |B| < lk/qk, B can

hit at most two of these levels. Inside each level, there are nk+1/pk+1 (k + 1)st generation

sectors equidistributed in a row which is lk/qk “high” and w “wide” where w is at most rk

(for the row farthest from v ) and at least rk/qk (for the row closest to v). Thus the number

of (k + 1)st generation sectors that hit B is approximately nk+1/pk+1 times |B|/w, and so is

at most |B|qknk+1/rkpk+1.

Next, each row of (k + 1)st generation sectors is divided into qk+2 bands of (k + 2)nd

generation sectors. (We use the term “bands” instead of “rows” since the situation is slightly

different than before; the (k +2)nd generation subsectors of fixed (k +1)st generation sector

do lie in rows equidistant from the vertex of the sector, exactly as before, but the union

of the subsectors over different (k + 1)st sectors are not all equidistant from a single point.

However, they are arranged in obvious bands which are close to being equidistant from the

vertex of the kth generation sector containing them.)

The height of each of these bands is approximately u = lk/(qkqk+1) and so at most 1 +

O(|B|/u) rows can hit B (and this is less than O(|B|/u) = O(|B|qkqk+1Qk)). Each row

contains nk+2/pk+2 sectors. Thus the total number of (k + 2)nd generation sectors that hit

B is less than a bounded multiple of

|B|2q2

kqk+1Q
2

kNknk+2nk+1p
−1

k+2
p−1

k+1
≤ |B|2qkQ

2

kNk+2.

(Recall that pk+1 ≥ pk + 1 = qk since the sequence is strictly increasing.)

Every (k+2)nd generation sector has mass N−1

k+2
, and B hits at most O(qk) kth generation

sectors in positive mass, so the total mass of the (k + 2)nd generation sectors hitting B is
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bounded by a constant times

qk

Nk+2

· (|B|2qkQ
2

kNk+2) ≤ |B|2φ(|B|)
q2
kQ

2
k

φ(|B|)
≤ |B|2φ(|B|) = ϕ(|B|),

by (3.2). Thus Hϕ(Γ̃) > 0 by the mass distribution principle, which proves Theorem 1.1.
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